ο»ΏSekarangbaris pertama dengan kolom 2 * 3 adalah 6 + 3 x minus 2 adalah minus 6 minus 1 dikali 2 adalah minus 2 minus 2 dikali minus 1 ada dua sekarang kita kalikan baris ke-2 dan kolom kedua minus 1 dikali 3 adalah minus 3 ditambah minus 2 dikali minus 2 adalah 4 maka = a dikurang 3 adalah 16 dikurang 6 adalah 0 - 2 + 2 adalah 0 nilai 3 + 4 adalah 1 Karang kita cari nilai dari XIni adalah sebuah konstanta dikalikan X dengan siapa elemen pada matriks A x dikali 2 adalah 2 X * 3 adalah 3 x VEKTOR SOAL LATIHAN 04 D. Perkalian Skalar Dua Vektor 01. Jika a = 3 i – 2 j + 6 k maka panjang vektor a adalah …. A. 12 B. 9 D. 3 5 E. 2 6 C. 7 02. Jika p = i – 2 j + 2 k dan q = 3 i + 6 j + 2 k maka panjang vektor p + q = ….. A. 4 3 D. 10 B. 3 6 E. 3 5 C. 21 03. Diketahui A-2, 1, 3 dan B6, 5, 2 maka nilai AB = …. A. 3 2 D. 9 B. 5 E. 2 3 C. 6 04. Jika ABC segitiga sama kaki, dimana titik A11, 8, 9, B-1, 2p, 3 dan C3, -2, -9 dengan panjang AB = BC maka nilai p = ….. A. 1 D. 4 B. 2 E. 5 C. 3 05. Pada segitiga KLM, diketahui KL wakil dari vektor a = 4 i – 4 j + 2 k dan KL wakil dari b = 2 i + 4 j + 6 k . Nilai dari a + a  b = ... A. 8 D. 15 B. 10 E. 16 C. 12 06. Jika diketahui vektor a = p i + 2 j – k dan vektor b = i + 3 k serta a  b = 2 3 maka nilai p = … A. -3 D. 3 B. -1 E. 5 C. 2 07. Diketahui titik R terletak pada ruas garis PQ sehingga PR PQ = 1 2. Jika vektor p = 3 i + j + k dan q = 9 i + 5 j + 7 k maka r = …. A. 62 D. 2 21 Vektor B. 61 E. 2 15 C. 38 1 08. Pada gambar disamping nilai dari a . b = … B. 20 3 A. 5 3 C. 10 3 D. 5 2 E. 10 09. Pada gambar disamping nilai dari a . b = … A. –6 3 B. –9 2 C. 6 3 D. 9 2 E. 8 3 10. Pada gambar disamping nilai dari a . b = … A. –12 3 B. –12 C. 12 D. 12 3 E. 24 11. Pada gambar disamping nilai dari a . b = … A. –10 3 B. –10 C. 10 D. 10 3 E. 20 12. Jika a = A. D. 21 30 29 dan a + b a – b = -1, maka panjang vektor b = … B. 2 6 E. 6 C. 2 7 13. Suatu persegi panjang OABC diketahui nilai OA = 12 cm dan AB = 5 cm. Jika OA = a dan OB = b maka nilai a . a + b = ….. A. 288 D. -36 B. 144 E. -72 C. 72 14. Jika vektor a + b + c = 0 dan a = 3, b = 5 dan c = 7, maka nilai a . b = …. A. 225 D. 75,5 Vektor B. 200 E. 7,5 C. 125 2 15. Jika a = 4 i + j + 5 k dan b = 2 i + j – 5 k maka hasil kali a . b = … A. -18 B. -16 C. 3 D. 12 E. 18 16. Jika A2, -3, 4, B6, -2, 2 dan C5, 4, 3 adalah titik-titik sudut dari segitiga ABC maka nilai AB . BC A. -8 B. 0 C. 6 D. 12 E. 15 17. Diketahui koordinat P-3, 2, 1 dan Q7, -3, 11 jika titik R membagi PQ dengan perbandingan PR RQ = 3 2, maka PR . RQ = …. A. 54 B. 36 C. 30 D. 24 E. 20 18. Diketahui A4, –3, 2 dan B–2, 5, 0. Jika titik P berada di tengah-tengah AB maka nilai dari PA . PB = …. A. 8 B. 3 C. -6 D. –20 E. –26 19. Diketahui segitiga ABC dimana A2x, 7, 3, Bx, 7, 7 dan C10, 16, 3x. Jika segitiga ABC siku-siku di A maka nilai x = …. A. -5 B. -4 C. 1 D. 2 E. 4 20. Diketahui vektor a = 3 i – 4 j + 2 k dan b = 2 i + 3 j serta c = 4 i + j – 6 k , maka hasil dari 2 a 3 b – 2 c = …. A. –24 D. 12 B. –20 E. 18 C. 8 21. Diketahui A1, 0, -1, B2, -5, 2 dan C-3, 1, 0 maka nilai dari BC . AC + 2 AB = …. A. 78 B. 64 C. 58 D. –58 E. –78 22. Diketahui a = 2 i – j + 2 k dan b = 3 i – j + k serta c = i + p j . Jika a . b + c = a . b maka nilai p = …. A. 1 B. 2 C. 3 D. 4 E. 5 23. Diketahu vektor a dan b dimana a  b = 11 dan a ο€­ b = 9, maka nilai a . b = …. A. 63 D. 15 B. 31,5 E. 10 C. 20 24. Diketahui dua vektor AB dan PQ , dimana AB = 6 cm dan PQ = 4 cm. Jika nilai AB . PQ = -12 maka besar sudut antara AB dan PQ adalah …. A. 300 D. 1200 Vektor B. 450 E. 1500 C. 600 3 25. Pada soal nomor 1 diatas, nilai sudut antara BA dan PQ adalah …. A. 300 B. 450 C. 600 0 0 D. 120 E. 150 26. Pada soal nomor 1 diatas, nilai sudut antara BA dan QP adalah …. A. 300 B. 450 C. 600 0 0 D. 120 E. 150 27. Jika  adalah sudut antara vektor a = 2 i + 4 j + 4 k dan b = i – 2 j +2 k , maka nilai cos  = …. A. 1/9 B. 1/6 C. 1/4 D. 1/2 E. 1/3 28. Besar sudut antara vektor p = –2 i + 2 k dan q = 2 j + 2 k adalah …. A. 300 B. 450 C. 600 D. 900 E. 1200 29. Diketahui P2, 4, –2 , Q4, 1, –1 , R7, 0, 2 dan S8, 2, –1. Besar sudut antara PQ dan RS adalah …. A. 300 D. 1200 B. 450 E. 1500 C. 600 30. Diketahui segitiga ABC dimana titik A4, 4, 1, B2, 5, 0 dan C0, 2, 1. Besar sudut B adalah A. 300 B. 450 0 0 D. 90 E. 150 31. Diketahui vektor a panjangnya 12 cm dan b panjangnya 8 cm. Jika sudut antara a dan b adalah 1200, maka nilai dari a + b a + b sama dengan …. A. 168 B. 112 C. 86 D. 68 E. 54 32. Diketahui u = 3 i + t j + 2 k . Jika u . u = 49 maka nilai t = ….. A. –4 B. –3 C. 2 D. 4 E. 6 33. Jika sudut yang dibentuk oleh dua vektor a = i – 2 j + k dan b = –4 i – 2 j +4 k adalah  maka nilai sin  = …. A. D. Vektor 1 9 5 9 6 3 B. E. 25 27 1 C. 5 9 3 9 4 34. Jika a = 3x i + x j – 4 k , b = –2 i + 4 j + 5 k dan c = -3 i + 2 j + k , serta a tegak lurus b , maka a – c = ….. A. 8 i + 9 j – 16 k B. 10 i + 15 j – 21 k D. –27 i – 12 j – 5 k E. –10 i + 15 j – 2 k C. –3 i + 12 j – k 35. Jika diketahui u = 4 cm dan v = 5 cm serta sudut antara u dan v adalah 600 maka panjang vektor 2 u + 3 v = ….. A. 23 D. 6 6 B. 28 E. 416 C. 409 36. Jika vektor a dan b membentuk sudut 300 serta berlaku a . a = 6 dan b . b = 4 maka nilai a  b = …. A. 2 7 D. B. 2 6 13 E. C. 3 2 5 37. Diketahui c = 2 a – 3 b . Jika a . c = 8 dan b . c = -3 serta a tegak lurus b , maka panjang vektor c adalah ….. A. 25 B. 20 C. 18 D. 12 E. 8 38. Diketahui dua vektor a = 2 i – j + 2 k dan b = 4 i + 10 j – 8 k . Jika x = a – n b tegak lurus dengan b maka nilai n = ….. A. 5 B. 4 D. 2/5 E. 1/10 C. -3 a  2 οƒΉ 0οƒΉ 39. Vektor p = οƒͺ a οƒΊ dan q = οƒͺ 3 οƒΊ . Jika sudut antara p dan q adalah 600 maka nilai p . q οƒͺ ο€­ 3οƒΊ οƒͺ 0 οƒΊ     sama dengan ... A. -3 B. -2 C. 2 D. 3 E. 4 40. Diketahui 3 buah vektor a , b , dan c membentuk segitiga sama sisi yang masing-masing panjangnya 10. Jika a = b + c , maka nilai a . b + b . c + c . a = .... A. 300 B. 150 C. 100 D. 50 E. ο€­50    41. Diketahui vektor a dan b dimana a = 6 cm dan b = 4 cm, serta a  b = 8 cm. Jika Ξ±  adalah sudut antara a dan b , maka cos Ξ± = … A. –1/3 B. –2/5 D. 1/3 E. 2/5 Vektor C. 1/4 5 42. Diketahui a = 2 dan b = 3 dan a  b = A. 450 D. 1350 5 . Besar sudut antara vektor a dan b adalah … B. 600 E. 1500 C. 1200   43. Jika diketahui vektor a dan b dimana a = 4 cm dan b = 5 cm serta

BlogKoma - Seperti yang telah kita bahas pada materi "pengertian vektor dan penulisannya", vektor memiliki besar (panjangnya) dan arah. Hal ini sangat berkaitan erat dengan materi kesamaan dua vektor yang akan kita bahas pada artikel kali ini yaitu materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris.Hal pertama yang akan kita bahas adalah pengertian kesamaan dua vektor, yang dilanjutkan

QAMahasiswa/Alumni Universitas Muhammadiyah Purworejo28 Februari 2022 1244Halo Aisyah, kk bantu Jawaban B. *Kita abaikan angka-angka setelah titik-titik. Pembahasan Ò‰Perbandingan atau rasio adalah salah satu teknik atau cara dalam membandingkan dua besaran. Yang dituliskan sebagai ab dengan a dan b merupakan dua besaran yang mempunyai satuan yang sama. Diketahui Ò€’ A = 2/3 I A/I = 2/3 AI = 23 Ò€’ I = 2/5 R I/R = 2/5 IR = 25 Diperoleh AI = 23 dan IR = 25 Samakan angka perbandingan I menjadi 6 AI = 23 dikali 2 >> AI = 46 IR = 25 dikali 3 >> IR = 615 Maka A I R = 4 6 15 Jadi, Jawaban yang tepat adalah B. Semoga membantuYah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Diketahuivektor a = [-2 3 4] dan b = [x 0 3]. Jika panjang proyeksi vektor a pada b adalah 4/5, maka salah satu nilai x yang memenuhi adalah .. 6. 4. 2 - 4 - 6. Mau dijawab kurang dari 3 menit? Coba roboguru plus! SD. S. Dwi. Master Teacher. Jawaban terverifikasi. Pembahasan.

KunciJawaban dan Pembahasan Soal Himpunan Kelas 7. 1. Diketahui A = {2, 3, 4} dan B = {1, 3}, maka A βˆͺ B adalah . 2. Diketahui M = {a, i, u, e, o} dan N = {a, u, o}, maka n (M βˆͺ N) adalah . 3. Diketahui X = {x | x < 6, x Ρ” bilangan asli) dan Y = {x | - 1 ≀ x ≀ 5, x Ρ” bilangan bulat}, maka anggota (X ∩ Y) adalah .

Soal Bagikan. Diketahui A=\left [\begin {array} {cc}2 & 3 \\ -1 & -2\end {array}\right], B=\left [\begin {array} {cc}2 & 3 \\ -1 & -2\end {array}\right] A =[ 2 βˆ’1 3 βˆ’2],B =[ 2 βˆ’1 3 βˆ’2] dan A^ {2}=\alpha A+\beta B A2 = Ξ±A+Ξ²B, nilai \operatorname {dari} \frac {\beta} {\alpha} dari Ξ±Ξ² adalah.
11SMA. Matematika. ALJABAR. Diketahui A= (3 2 7 5), B= (2x-1 3x-2y-2 y-1 x), dan matriks C berordo 2x2. Jika CA=B dan A+B+C= (21 -4 -1 11) maka nilai xy-2 (x+y) adalah Operasi Pada Matriks. Matriks. ALJABAR. Matematika.
. 284 336 109 44 446 255 245 41

diketahui a 2 3 i